Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Drug Metab Dispos ; 51(3): 350-359, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36627162

RESUMEN

Recent advancements in single-cell technologies have enabled detection of RNA, proteins, metabolites, and xenobiotics in individual cells, and the application of these technologies has the potential to transform pharmacological research. Single-cell data has already resulted in the development of human and model species cell atlases, identifying different cell types within a tissue, further facilitating the characterization of tumor heterogeneity, and providing insight into treatment resistance. Research discussed in this review demonstrates that distinct cell populations express drug metabolizing enzymes to different extents, indicating there may be variability in drug metabolism not only between organs, but within tissue types. Additionally, we put forth the concept that single-cell analyses can be used to expose underlying variability in cellular response to drugs, providing a unique examination of drug efficacy, toxicity, and metabolism. We will outline several of these techniques: single-cell RNA-sequencing and mass cytometry to characterize and distinguish different cell types, single-cell proteomics to quantify drug metabolizing enzymes and characterize cellular responses to drug, capillary electrophoresis-ultrasensitive laser-induced fluorescence detection and single-probe single-cell mass spectrometry for detection of drugs, and others. Emerging single-cell technologies such as these can comprehensively characterize heterogeneity in both cell-type-specific drug metabolism and response to treatment, enhancing progress toward personalized and precision medicine. SIGNIFICANCE STATEMENT: Recent technological advances have enabled the analysis of gene expression and protein levels in single cells. These types of analyses are important to investigating mechanisms that cannot be elucidated on a bulk level, primarily due to the variability of cell populations within biological systems. Here, we summarize cell-type-specific drug metabolism and how pharmacologists can utilize single-cell approaches to obtain a comprehensive understanding of drug metabolism and cellular heterogeneity in response to drugs.


Asunto(s)
Neoplasias , Proteómica , Humanos , Proteómica/métodos , Medicina de Precisión/métodos , Proteínas , Análisis de la Célula Individual/métodos
2.
Drug Metab Dispos ; 51(4): 521-531, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36623884

RESUMEN

Antiretroviral drugs such as efavirenz (EFV) are essential to combat human immunodeficiency virus (HIV) infection in the brain, but little is known about how these drugs are metabolized locally. In this study, the cytochrome P450 (P450) and UDP-glucuronosyltransferase (UGT)-dependent metabolism of EFV was probed in brain microsomes from mice, cynomolgus macaques, and humans as well as primary neural cells from C57BL/6N mice. Utilizing ultra high performance liquid chromatography high-resolution mass spectrometry (uHPLC-HRMS), the formation of 8-hydroxyefavirenz (8-OHEFV) from EFV and the glucuronidation of P450-dependent metabolites 8-OHEFV and 8,14-dihydroxyefavirenz (8,14-diOHEFV) were observed in brain microsomes from all three species. The direct glucuronidation of EFV, however, was only detected in cynomolgus macaque brain microsomes. In primary neural cells treated with EFV, microglia were the only cell type to exhibit metabolism, forming 8-OHEFV only. In cells treated with the P450-dependent metabolites of EFV, glucuronidation was detected only in cortical neurons and astrocytes, revealing that certain aspects of EFV metabolism are cell type specific. Untargeted and targeted proteomics experiments were used to identify the P450s and UGTs present in brain microsomes. Eleven P450s and 11 UGTs were detected in human brain microsomes, whereas seven P450s and 14 UGTs were identified in mouse brain microsomes and 15 P450s and four UGTs, respectively, were observed in macaque brain microsomes. This was the first time many of these enzymes have been noted in brain microsomes at the protein level. This study indicates the potential for brain metabolism to contribute to pharmacological and toxicological outcomes of EFV in the brain. SIGNIFICANCE STATEMENT: Metabolism in the brain is understudied, and the persistence of human immunodeficiency virus (HIV) infection in the brain warrants the evaluation of how antiretroviral drugs such as efavirenz are metabolized in the brain. Using brain microsomes, the metabolism of efavirenz by both cytochrome P450s (P450s) and UDP-glucuronosyltransferases (UGTs) is established. Additionally, proteomics of brain microsomes characterizes P450s and UGTs in the brain, many of which have not yet been noted in the literature at the protein level.


Asunto(s)
Glucuronosiltransferasa , Infecciones por VIH , Humanos , Ratones , Animales , Glucuronosiltransferasa/metabolismo , Microsomas Hepáticos/metabolismo , Macaca/metabolismo , Proteómica , Ratones Endogámicos C57BL , Sistema Enzimático del Citocromo P-450/metabolismo , Biotransformación , Encéfalo/metabolismo , Uridina Difosfato/metabolismo
3.
Front Behav Neurosci ; 14: 73, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32508604

RESUMEN

Effort-related choice (ERC) tasks allow animals to choose between high-value reinforcers that require high effort to obtain and low-value/low-effort reinforcers. Dopaminergic neuromodulation regulates ERC behavior. The enzyme catechol-O-methyltransferase (COMT) metabolizes synaptically-released dopamine. COMT is the predominant regulator of dopamine turnover in regions of the brain with low levels of dopamine transporters (DATs), including the prefrontal cortex (PFC). Here, we evaluated the effects of the COMT inhibitor tolcapone on ERC performance in a touchscreen-based fixed-ratio/concurrent chow task in male mice. In this task, mice were given the choice between engaging in a fixed number of instrumental responses to acquire a strawberry milk reward and consuming standard lab chow concurrently available on the chamber floor. We found no significant effects of tolcapone treatment on either strawberry milk earned or chow consumed compared to vehicle treatment. In contrast, we found that haloperidol decreased instrumental responding for strawberry milk and increased chow consumption as seen in previously published studies. These data suggest that COMT inhibition does not significantly affect effort-related decision making in a fixed-ratio/concurrent chow task in male mice.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...